MLOps Community
timezone
+00:00 GMT
SIGN IN
  • Home
  • Events
  • Content
  • People
  • Messages
  • Channels
  • Help
Sign In
Sign in or Join the community to continue

Managing Machine Learning Projects

Posted Oct 18
# Machine Learning Projects
# ML Orchestration
# Data Assets
Share
SPEAKER
Simon Thompson
Simon Thompson
Simon Thompson
Head of Data Science @ GFT Group

Simon has been building and running ML projects since 1994 (when he started his Ph.D. in MachineLearning). His first commercial project was for the Royal Navy, and since then he has worked in Telecom, Defense, Consultancy, Manufacturing, and Finance. This means Simon has experienced a wide range of working environments and different types of projects. As well as working in a variety of commercial environments Simon collaborated on EU research projects, UK Government funded research projects and worked as an industrial rep on three MIT consortia (BigData@CSAIL, Systems That Learn, and the CISR Data Research Board).

Simon was also an industrial fellow at the Alan Turing Institute for a year. This means that he has also seen a lot of the communities' practices and concerns as they developed, and he had the chance to put them into use in a commercial environment.

Right now, Simon is working for a technology consultancy called GFT, and his job there is primarily to deliver ML projects for companies in the capital markets such as investment banks, although we also do work in retail banking, insurance, and manufacturing.

+ Read More

Simon has been building and running ML projects since 1994 (when he started his Ph.D. in MachineLearning). His first commercial project was for the Royal Navy, and since then he has worked in Telecom, Defense, Consultancy, Manufacturing, and Finance. This means Simon has experienced a wide range of working environments and different types of projects. As well as working in a variety of commercial environments Simon collaborated on EU research projects, UK Government funded research projects and worked as an industrial rep on three MIT consortia (BigData@CSAIL, Systems That Learn, and the CISR Data Research Board).

Simon was also an industrial fellow at the Alan Turing Institute for a year. This means that he has also seen a lot of the communities' practices and concerns as they developed, and he had the chance to put them into use in a commercial environment.

Right now, Simon is working for a technology consultancy called GFT, and his job there is primarily to deliver ML projects for companies in the capital markets such as investment banks, although we also do work in retail banking, insurance, and manufacturing.

+ Read More
SUMMARY

It's a cliche to say that choosing and running the algorithms is only a small part of a typical ML project but despite that it's true! Setting up and organizing the project, dealing with the data asset, getting to the heart of the business problem, assessing and choosing the models, and integrating them with the business processes in production are all at least as time-consuming and important.

Simon has written a book that talks about how these different activities need to be orchestrated and executed and he hopes that it might be useful for people who are starting out managing ML projects and help them avoid some of the crunches and catches that seem to trip people up.

+ Read More

Watch More

1:03:54
Posted Dec 07 | Views 1.1K
# FinTech
# Case Study
# Interview
52:38
Posted Apr 29 | Views 527
# FastAPI
# ML Platform
# Building Communities