Collections
All Collections
All Content
Popular topics
# LLMs
# LLM in Production
# AI
# Machine Learning
# Rungalileo.io
# LLM
# MLops
# Interview
# RAG
# Tecton.ai
# Machine learning
# Arize.com
# mckinsey.com/quantumblack
# Redis.io
# Zilliz.com
# Generative AI
# MLOps
# Humanloop.com
# Snorkel.ai
# Redis.com
Alex Strick van Linschoten & Demetrios Brinkmann · Jan 31st, 2025
Alex Strick van Linschoten, a machine learning engineer at ZenML, joins the MLOps Community podcast to discuss his comprehensive database of real-world LLM use cases. Drawing inspiration from Evidently AI, Alex created the database to organize fragmented information on LLM usage, covering everything from common chatbot implementations to innovative applications across sectors. They discuss the technical challenges and successes in deploying LLMs, emphasizing the importance of foundational MLOps practices. The episode concludes with a call for community contributions to further enrich the database and collective knowledge of LLM applications.
# ChatBot
# LLM
# ZenML
Bartosz Mikulski · Jan 28th, 2025
Expert strategies for improving AI agent performance through better data retrieval, query generation, automated decision-making process, and response generation. The article covers data collection, metrics, and techniques to improve the agent's performance.
# AI Agents
# AI
# RAG
# PydanticAI
Ilya Reznik & Demetrios Brinkmann · Jan 27th, 2025
Ilya Reznik's insights into machine learning and career development within the field. With over 13 years of experience at leading tech companies such as Meta, Adobe, and Twitter, Ilya emphasizes the limitations of traditional model fine-tuning methods. He advocates for alternatives like prompt engineering and knowledge retrieval, highlighting their potential to enhance AI performance without the drawbacks associated with fine-tuning.
Ilya's recent discussions at the NeurIPS conference reflect a shift towards practical applications of Transformer models and innovative strategies like curriculum learning. Additionally, he shares valuable perspectives on navigating career progression in tech, offering guidance for aspiring ML engineers aiming for senior roles. His narrative serves as a blend of technical expertise and practical career advice, making it a significant resource for professionals in the AI domain.
# Meta
# Consulting
# Instructed Machines, LLC
Tomaz Levak & Demetrios Brinkmann · Jan 24th, 2025
The talk focuses on how OriginTrail Decentralized Knowledge Graph serves as a collective memory for AI and enables neuro-symbolic AI. We cover the basics of OriginTrail’s symbolic AI fundamentals (i.e. knowledge graphs) and go over details how decentralization improves data integrity, provenance, and user control. We’ll cover the DKG role in AI agentic frameworks and how it helps with verifying and accessing diverse data sources, while maintaining compatibility with existing standards.
We’ll explore practical use cases from the enterprise sector as well as latest integrations into frameworks like ElizaOS. We conclude by outlining the future potential of decentralized AI, AI becoming the interface to “eat” SaaS and the general convergence of AI, Internet and Crypto.
# AI
# Decentralized Knowledge Graph
# OriginTrail
Zach Wallace · Jan 24th, 2025
Agents are transforming how we approach problem-solving, automation, and user interaction. In this talk, I will explore the practical applications of agents, focusing on how they can deliver value. We'll discuss when agents are the right tool for the job, scenarios where they are not the right tool for the job, and strategies for deploying them to production with confidence and reliability. Whether you're new to agents or looking to refine your approach, this session offers actionable insights grounded in real-world experience.
# Agents
# real world
# AI agents in production
Nirodya Pussadeniya · Jan 24th, 2025
AI Agents as Neuro-Symbolic Systems: Expanding the Boundaries of Intelligence" The current discourse around AI agents often centers on LLM-based systems with tool-calling capabilities, like REACT agents. While effective, this narrow definition limits the potential of agents to solve complex, real-world problems. In this talk, we explore a broader, more robust perspective—AI agents as neuro-symbolic systems. By combining neural networks' adaptability with the precision of symbolic reasoning, neuro-symbolic architectures bridge traditional AI approaches and modern advancements, enabling scalable and versatile workflows. This expanded definition accommodates not only LLMs but also embedding models, decision trees, and hybrid systems that integrate various modalities of intelligence. We will delve into: 1. The evolution of AI agents and the limitations of current models. 2. The core principles of neuro-symbolic systems and their practical applications. 3. A reimagined framework for building intelligent agents that operate flexibly across diverse tasks. This session aims to redefine the way we think about AI agents, empowering developers and researchers to design systems that are more efficient, resilient, and capable of tackling dynamic challenges. Join us as we explore the future of agentic AI and its transformative potential.
# Agents
# neuro
# symbolic
# neuro-symbolic systems
Nehil Jain · Jan 20th, 2025
This blog highlights 20 ways generative AI (GenAI) can enhance technical documentation. It covers key use cases like drafting structured documents, generating API examples, ensuring content consistency, improving search functionality, and automating quality control. AI tools can assist in creating templates, summarizing release notes, generating glossary terms, detecting bugs in code snippets, and optimizing search queries. The blog emphasizes that while AI is a powerful tool, it should be used wisely to complement, not replace, the work of technical writers and developers, helping to produce better, more reliable docs that build trust with users.
# Documents
# AI
# Machine Learning
Krishna Sridhar & Demetrios Brinkmann · Jan 17th, 2025
Qualcomm® AI Hub helps to optimize, validate, and deploy machine learning models on-device for vision, audio, and speech use cases.
With Qualcomm® AI Hub, you can:
Convert trained models from frameworks like PyTorch and ONNX for optimized on-device performance on Qualcomm® devices.
Profile models on-device to obtain detailed metrics including runtime, load time, and compute unit utilization.
Verify numerical correctness by performing on-device inference.
Easily deploy models using Qualcomm® AI Engine Direct, TensorFlow Lite, or ONNX Runtime.
The Qualcomm® AI Hub Models repository contains a collection of example models that use Qualcomm® AI Hub to optimize, validate, and deploy models on Qualcomm® devices.
Qualcomm® AI Hub automatically handles model translation from source framework to device runtime, applying hardware-aware optimizations, and performs physical performance/numerical validation. The system automatically provisions devices in the cloud for on-device profiling and inference. The following image shows the steps taken to analyze a model using Qualcomm® AI Hub.
# AI
# Models at the Edge
# Qualcomm
Ankur Tyagi · Jan 15th, 2025
This blog compares three popular machine learning workflow orchestration tools: ZenML, Flyte, and Metaflow. It explores their features, use cases, and strengths, helping data scientists and engineers choose the best option for building and managing efficient ML pipelines.
# ZenML
# Flyte
# Metaflow
Zach Wallace & Demetrios Brinkmann · Jan 14th, 2025
Demetrios chats with Zach Wallace, engineering manager at Nearpod, about integrating AI agents in e-commerce and edtech. They discuss using agents for personalized user targeting, adapting AI models with real-time data, and ensuring efficiency through clear task definitions. Zach shares how Nearpod streamlined data integration with tools like Redshift and DBT, enabling real-time updates. The conversation covers challenges like maintaining AI in production, handling high-quality data, and meeting regulatory standards. Zach also highlights the cost-efficiency framework for deploying and decommissioning agents and the transformative potential of LLMs in education.
# AI Agents
# LLMs
# Nearpod Inc